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A cell boundary element method is used to solve the two-dimensional incompressible Navier}
Stokes equation for vortex-shedding #ows around arrays of cylinders. The method is a hybrid
scheme using a boundary element method in each #uid cell discretization with a "nite element
procedure to solve for the global #uid problem. Computations are presented of two-dimen-
sional #ow characteristics and interactive forces associated with #ows around four equispaced
cylinders of equal diameter, and two cylinders, one with circular cross-section and the other
elliptical. It was found that behaviour such as in-phase vortex-shedding, anti-phase vortex
shedding and synchronized vortex shedding, which are well-known characteristics for #ows
past arrangements of two circular cylinders, were also present in these more complicated #ows.
The application of the cell boundary element method to these #ow problems, using an
unstructured #uid domain mesh idealization, proved straightforward and required no modi"ca-
tion for variation of the number of bodies or their shape. ( 2000 Academic Press
1. INTRODUCTION

IN THE DESIGN OF DEEPWATER FLOATING OIL PRODUCTION SYSTEMS, there is a need to analyse the
hydrodynamic behaviour of key parts of the structure such as the risers for production,
export and injection of gas or water. Typically, these o!shore production platforms are in
the form of ship-shaped #oating production, storage and o!-loading facilities (FPSO),
tension leg platforms (TLP) or spars [see, for example, Hatton (1999)].

In oil"eld developments now exceeding 1000 m water depth, the cross-section of the
#exible riser may be typically less than 2 m and can experience ocean currents with
velocities in excess of 1)0 m/s. The latter are su$cient to provide the necessary energy for
self-excited vibration of the structure due to vortex shedding. This is often known as
vortex-induced vibration (VIV) and is a major cause of fatigue damage to welds in risers.

Accurate fatigue life prediction relies, in part, on the accuracy of the model used to
represent the #uid action on the structure. Nevertheless, even in multi-cylinder arrange-
ments, most #uid}structure interaction studies are limited to the case of a single cylinder. In
contrast, this paper investigates vortex-shedding #ows around pipe bundle geometries, with
-Now at 2H O!shore Ltd, Woking, U.K.
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the aim of identifying di!erences between single cylinder #ows and those around multiple
cylinders. Of particular importance for fatigue life prediction is the frequency and magni-
tude of the vibration. Knowledge of these properties is required when using material fatigue
strength design curves in the form of S}N curves, where S is the cyclic stress magnitude and
N is the number of cycles to failure [see, for example, Barltrop & Adams (1991) and Gran
(1992)].

In most cases, the Reynolds number is large and the #ows are transitional or turbulent.
Because of this, many of the #ow features are three-dimensional and of a complex structural
nature. These characteristics make analysis di$cult, even using direct numerical simulation
of the governing Navier}Stokes equations; see, for example, Hunt (1995) and Gatski et al.
(1996). In the absence of the ability to solve these #uid problems directly, a number of
approaches have evolved to predict the behaviour of such systems, at least in some
restricted cases. For example, it is the practice to assume that the #ow can be treated as
two-dimensional, even if the blu! body is not perpendicular to the uniform stream, by
resolving the #ow normal to the body surface and assuming this to be the characteristic
velocity over the body (Blevins 1990). Furthermore, the #uid action is often modelled
empirically by a simple sinusoidal excitation or by a more complicated wake oscillator
model [see, for example, Hassan (1962), Bishop & Hassan (1964) and Sarpkaya & Isaacson
(1981)]. While such approaches are of great utility, the assumptions involved in develop-
ment (i.e. the two-dimensional nature of the #ow, and the isolation of the cylinder, etc.)
restrict their applicability. In fact, it is common practice in industry to apply a safety factor
of 100 to predicted fatigue life results when using such approaches.

Direct numerical solution of the Navier}Stokes equations governing the #uid motion,
can be used to represent more accurately the vortex dynamics of the #ow. However,
evaluating the #uid action is computationally intensive because all the details of the wake
and the boundary layer must be resolved [see, for example, Gatski et al. (1996)]. At present
it is not possible to compute such #ows unless the Reynolds number is moderately low
(Re(10 000) or a sub-grid scale turbulence model is used [see, for example Cheng
& Arm"eld (1994)]. In spite of this, it is observed in the experiment (Williamson 1985;
Zdravkovich 1977) that many of the large-scale characteristics of transitional or turbulent
#ows show a resemblance to those at much lower Reynolds number. For this reason,
numerous numerical studies have been performed at these lower Reynolds numbers; see, for
example, Van de Vosse et al. (1986), Slaouti & Stansby (1994), Persillon et al. (1995) and
Zhang & Zhang (1997).

In the case where there are multiple bodies in close proximity, computation of the #ow
becomes even more problematical, due to the need to model additional body surfaces and to
include large areas of #uid domain between and around the cylinders. Perhaps because of
this, investigations have concentrated on #ows around two cylinders in various arrange-
ments (i.e. side by side, tandem, or staggered) and at Reynolds numbers Re41000.
Examples of such investigations are described by Chang & Song (1990), Tezduyar et al.
(1990), Li et al. (1991), Johnson et al. (1993), Slaouti & Stansby (1992) and Mittal et al.
(1997).

The present study focuses on two-dimensional, laminar vortex shedding from multiple-
cylinder con"gurations. The examples chosen are idealizations of cylinder arrangements
found in o!shore engineering, i.e. tubular structures, risers, etc. Therefore, the cases
investigated involve isolated cylinders, two cylinders with circular or elliptical cross-
sections side by side or in tandem in the #ow, and four cylinders of equal diameter and at
equal spacings in various #ows. To achieve descriptions of the interactive vortex shedding,
the mathematical model developed needs to combine the ability to idealize arbitrary-
shaped structures and a large #uid domain with such detail to characterize accurately in
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space and time the interacting phenomena. Tan et al. (1999) developed a cell boundary
element method (cell BEM) to solve viscous #uid}structure interaction problems modelled
by the Navier}Stokes equations. A hybrid approach was proposed incorporating boundary
element and "nite element methods. That is, cell equations are generated using the
principles of the boundary element method, with global equations derived following the
procedures of the "nite element method. A primitive-variable formulation with an unstruc-
tured mesh representation of the #uid forms the basis of the hybrid approach which can be
applied to both two- and three-dimensional problems. The validation of the developed
numerical scheme under study, involving analytical and numerical procedures, was under-
taken by Farrant (1999), Tan et al. (1999) and Farrant et al. (1999) using a wide selection of
well-documented #ow solutions, i.e. Couette #ows, backward-facing step #ows, driven
cavity #ows, and #ows past circular cylinders, etc. They demonstrated the accuracy and
robustness of the method through detailed comparisons with theoretical and experimental
"ndings. The present investigation extends the application of the cell boundary element
method to arrays of cylinders arbitrarily positioned in the #uid #ow. Since the approach
and numerical scheme of the study are documented elsewhere, a brief reH sumeH of the
mathematical model is included herein.

2. MATHEMATICAL THEORY

The boundary element method described by Price & Tan (1992) treats the nonlinear
convective term of the Navier}Stokes equations as a pseudo-body force. This approach
required a solution process involving full matrices and had a negative impact on the overall
e$ciency and stability of the numerical scheme (Tan 1994). To overcome these di$culties,
Tosaka & Kakuda (1988) developed a generalized boundary element method to tackle
nonlinear problems.

This generalized method was used as the basis of an approach by Tan et al. (1999) to solve
incompressible Navier}Stokes #ow problems. In e!ect, this approach is a hybrid scheme
based on the boundary element and "nite element methods. That is, instead of introducing
the integral equation to the whole #uid}structure system directly, the #uid domain is
divided into a large number of cells or elements, in a similar discretization process to the
"nite element or "nite volume methods. The boundary element method is then applied to
each cell to generate sets of algebraic equations which consistently represent the
Navier}Stokes equations on each cell. Application of continuity conditions, on #uid
velocity and surface traction force, at the cell interfaces allows a global system of algebraic
equations to be obtained and solved. This global system describes the dynamics of the #uid
in the whole domain.

To apply the boundary element method on a cell in time-dependent problems, the
nonlinear term in the Navier}Stokes equations which models the #uid in each cell is
resolved at each time step. The nonlinear nature of the equation is modelled through
a suitably time-stepping scheme.

The fundamental solution needed for the cell calculation is a modi"ed Oseen solu-
tion which has been derived by Price & Tan (1992) for two- and three-dimensional
problems. The convective velocity involved in the Oseen solution changes not only
during time stepping but also spatially from cell to cell. This procedure improves
numerical stability, since the nonlinear feature of the #ow is represented in the fundamental
solution.

The cell BEM is a primitive-variable formulation which allows easy application to
three-dimensional problems. Furthermore, the use of the velocity and surface traction force
as the basic unknowns provides a convenient way of expressing boundary conditions.
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In this paper the formulation is described brie#y with particular emphasis on its use with
two-dimensional, time-dependent problems. For a complete description of the method for
steady-state and time-dependent problems with validation examples, see Tan et al. (1999).

2.1 GOVERNING EQUATIONS AND INTEGRAL EQUATION

Figure 1 illustrates a #uid domain represented by an unstructured cell idealization, with
individual cell domain X and surface R. Assuming the #uid incompressible, the
Navier}Stokes equation and continuity equation describing the nondimensional #uid #ow
velocity, v (x, t), and nondimensional pressure, p (x, t), are given respectively by
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where a prime denotes a dimensional quantity. Here ¸@ and ;@ are the characteristic length
and velocity, respectively. For blu! bodies in a uniform stream #ow, normally the character-
istic length is taken as the largest body dimension across the stream and the characteristic
velocity is that of the stream. Therefore, in equation (1), l
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where the upper limit of the summation takes the value of 2 or 3 for two- and three-
dimensional problems, respectively.

Before formation of an integral equation involving the Navier}Stokes equations, it is
bene"cial both analytically and for enhanced computational e$ciency to introduce
a scheme to resolve the nonlinear convective term in equation (1). For time-dependent
problems this can be achieved by using a di!erencing approximation which maintains an
accuracy of second order, Dt2, in the (n#1)th time step. For this scheme, contributions
from the velocity "eld at the nth and (n!1)th time steps are also included. That is,
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Regardless of the time-marching scheme employed it is possible to form an integral
equation using the modi"ed form of the Navier}Stokes equations, equation (3). Integrating
over the cell domain X, while incorporating two arbitrary weighting functions v*

sj
and p*

s
,
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and applying Gauss's theorem leads to the following integral equation (Tan 1994):
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where d and D are Kronecker and Dirac delta functions, respectively. The solution of
equations (5) and (6) is referred to as the fundamental solution and represents the response
of the system to a point excitation. Choosing the functions to satisfy equations (5) and (6),
according to the boundary element method, considerably simpli"es equation (4) to
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In equation (7) the velocity everywhere in the cell is expressed as surface integrals of
velocity v and traction R on the cell boundary, as well as a domain integral which can also
be calculated from the values of velocity on the boundary. Therefore, equation (7) represents
a relationship between the cell velocity "eld and the surface traction force.

A description of the derivation process for the fundamental solution is given by Tan et al.
(1999) and further details are discussed by Price & Tan (1990). This description will not be
repeated here. However, it should be noted that to simplify the process of solution of
equations (5) and (6), a further approximation is introduced to replace the unknown
convective velocity vJ

k
by a cell average velocity u

k
. This was shown by Tan et al. (1999) to

have an insigni"cant e!ect on overall solutions after the completion of a large number of
numerical tests.

2.2. NUMERICAL MODELLING AND THE CELL EQUATIONS

To solve a #uid #ow problem, the domain is discretized into a large number of cells in the
unstructured form as shown in Figure 1. For each cell, it is possible to approximate the
integral equation (7) through adoption of assumed distributions of the unknowns v and



Figure 1. A cell within the global #uid domain idealized by an unstructured mesh.
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R based on their values at collocation points on the cell boundary. This procedure is
developed from the standard boundary element discretization methods; see, for example,
Brebbia (1978) and Brebbia & Walker (1980a, b). The introduction of this approximation
procedure allows a set of algebraic equations to be obtained from the integral equation (7).
To illustrate this process, a discussion follows for the two-dimensional, time-dependent case
in which a second-order time-stepping scheme is used, and cells are restricted to quadrilat-
eral shapes with collocation points at the centre of each edge.

A typical cell is shown in Figure 2. The collocation points and edges are assigned
a common local numbering system as there is only one control point per edge. Applying this
cell structure to the integral equation (7) results in the following approximate form:
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are sets of interpolation polynomials for the velocity "eld v

j
,

the surface traction force R
j
and the velocity from the previous time step v(n), respectively.

The subscript a is used, because the last integral describes the acceleration term in the
Navier}Stokes equations. The function H(v(n)

j
, v(n~1)

j
) is due to the second-order time-

di!erencing scheme and its value is determined by velocity values from the previous nth and
(n!1)th time steps. The index l"1, 2, 3, 4 indicates a line integration along each edge of
the cell. However, the index i, also varies from 1 to 4 but moves through the collocation
points and the corresponding interpolation functions as required by the integration. For



Figure 2. The two-dimensional quadrilateral cell de"nition.
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a more detailed description of the interpolation functions and the integration of the
fundamental solution, see Tan et al. (1999).

When n in equation (9) moves to the coordinates of each collocation point in turn and the
index s is allowed to take the values 1 and 2 (because of two dimensions), eight simultaneous
algebraic equations are generated for the cell. Therefore, if the superscript e denotes the eth
cell, the eight algebraic equations can be expressed in the form

A(e)
v
<(e)"A(e)

r
R(e)#b(e).

Here, <(e) and R(e) are column arrays of the velocity "eld and surface traction force
components at the collocation points. The 8]8 matrix A(e)

v
groups coe$cients which

arise due to the evaluation of the two integrals on the left-hand side of equation (9) involving
the velocity at the collocation points. The 8]8 matrix A(e)

r
includes coe$cients from the

boundary integral on the right-hand side of equation (9) relating to the values of the surface
traction force at the collocation points. The single column array b(e) contains entries
evaluated from the domain integral incorporating the contribution of the velocity from the
last time step, v(n)

j
.

In order to construct a global system of equations to solve for the velocity "eld, using the
eight cell equations, an expression for R(e) is obtained in the form

R(e)"C(e)<(e)!d(e), (10)

where C(e) and d(e) are solutions of the equations
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Algebraic cell equations, as de"ned by (10), can be obtained for every cell in the mesh.
A combination of the equation sets from all the cells allows solution of the global #uid
problem.

2.3. THE GLOBAL EQUATIONS

To solve the global #uid problem, the cell equations are assembled into a global system
using cell interface conditions applied at the collocation points. For the surface traction
force R, the forces must be equal and opposite to one another on common collocation
points between neighbouring cells. Additionally, the velocity v must be equal at common
collocation points. Mathematically, this can be expressed as

R(i)#R@(i{)"0 and v(i)"v@(i{), (12)
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where R(i), R@(i{), v(i) and v@(i{) are the values of the traction and velocity on the same
collocation point belonging to di!erent cells.

The global system of equations is assembled according to a global order which is de"ned
using a consecutive numbering system for the collocation points in the mesh. This num-
bering process is identical to that used in the construction of the sti!ness matrix described in
"nite element analysis of structures [see, for example, Cook et al. (1989)]. Using the
inter-cell conditions, the global numbering system and the cell equation sets generated by
equation (9), a global system of algebraic equations describing the velocities at the collo-
cation points is created. That is,

D<"F, (13)

where < is the array of velocity values on the collocation points in the global order, D is
constructed from the coe$cients in C(e) [see equation (10)], and F represents the contribu-
tions from b(e). When velocities are speci"ed at the domain boundary, for example with the
no-slip condition on a body surface, the equations are rearranged so that for the speci"ed
boundary collocation points the unknown degree of freedom becomes the traction force R.
A detailed description of the implementation of boundary conditions can be found in Tan
et al. (1999).

Each cell only interacts directly with its neighbours through shared collocation points.
This feature of the scheme leads to the global equation system matrix D being symmetrical
in form although the values of its nonzero entries are not. For such matrices, the skyline
method of matrix storage is e$cient (Bathe & Wilson 1976).

3. SIMPLE FLOW CONFIGURATIONS AND VALIDATION

An extensive validation of the cell BEM was performed by Tan et al. (1999) for standard
analytical and experimental benchmarks, such as Couette channel #ow, driven cavity #ow,
and #ow over a backward-facing step. This validation was extended by Farrant et al. (1999)
to vortex-shedding #ows around circular cylinders in isolation or in pairs.

The current study investigates #ows around cylinder combinations, some with di!erent
cross-sectional shape. These examples represent signi"cant departures from the simple cases
undertaken previously by the authors and emphasize the necessity of unstructured #uid
domain idealizations. To aid interpretation of the "ndings presented in this paper, key
results for an isolated cylinder at Re"200 and two cylinder #ows are reviewed.

3.1. ISOLATED CYLINDER, Re"200

The #ow solution for an isolated cylinder at Re"200 was computed using the cell
boundary element method, and a systematic study performed to quantify the e!ects of
discretization parameters and convergence of solution as measured by the Strouhal fre-
quency S (equal to fD/;, where f is the shedding frequency, ; the free-stream velocity,
and D the cylinder diameter), the drag coe$cient C

D
and lift coe$cient C

L
, derived from

the proposed numerical scheme of study. Each computation was run until vortex
shedding was established. When the shedding frequency changed by less than 0.5% per
cycle (this was an arbitrary limit), the computation was assumed to have reached a periodic
state.

For the computational domain size investigation as de"ned by front, back and side
boundaries relative to the cylinder, it was found that the lift was most sensitive to the overall
rectangular dimensions of the mesh domain, while the shedding frequency was quite robust.
Furthermore, perhaps because of the periodic wake, the upstream boundary had slightly



TABLE 1

The e!ect of mesh re"nement on the shedding frequency S, drag coe$cient
C

D
and lift coe$cient C

L
for an isolated cylinder at Re"200

Number of collocation
points S C

D
(time-averaged) C

L
(peak-to-peak)

2907 0)193 1)47 1)51
6037 0)193 1)39 1)50
8033 0)196 1)36 1)42

11358 0)196 1)36 1)42
15295 0)196 1)37 1)45

TABLE 2

The convergence in time of key vortex-shedding para-
meters for an isolated cylinder at Re"200

Dt S C
D

(time-averaged) C
L

(peak-to-peak)

0)2 0)203 1)39 1)46
0)1 0)196 1)36 1)42
0)05 0)196 1)36 1)40
0)025 0)196 1)36 1)43
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more e!ect than the one downstream. From this global study it was concluded that
boundaries positioned at 16D front, 14D back and 10D at the sides provide a good
compromise between accuracy of solution and computational costs. (The 14D back is
a suggested minimum value but this can be extended as desired.) These values corroborate
the guideline values developed by Tezduyar & Shih (1991) and Behr et al. (1995) from
di!erent mathematical models and numerical schemes of study.

Mesh re"nement checks were performed using "ve meshes (Farrant et al. 1999). The e!ect
on vortex shedding is shown in Table 1. From these data it was decided to use the 8033
collocation point mesh with boundary conditions (v

1
"1, v

2
"0) front, (v

1
"1, R

2
"0)

back and (v
1
"1, R

2
"0) sides for further computations. Table 2 illustrates the in#uence of

changing time step size and it was concluded that, as long as this key parameter was at least
as small as 0)1, the solution changed less than a few percent for all values. This study
revealed that there was a small di!erence between the time-averaged drag value (calculated
by integrating over the time period) and the mean of the peak and trough values on the drag
curve. This di!erence was caused by numerical errors and found to disappear with
decreasing time step. When Dt"0)1, the error in the time-averaged drag value associated
with this di!erence is less than 1%. For the computations presented in this paper a time step
of Dt"0)1 was chosen based on the considerations of both numerical accuracy and
computational costs.

Because of the three-dimensional instabilities encountered in experiments (Williamson
1996), no experimental data are available for this two-dimensional vortex-shedding #ow at
Re"200. However, a comparison with di!erent numerical methods adopted by some other
investigators for this problem was carried out (Farrant et al. 1999) and the results can be
found in Table 3. There is a fairly good agreement between the results in this table, with the
exception of the values obtained by Li et al. (1991).



TABLE 3

Values of Strouhal number, lift and drag coe$cients for an isolated cylinder at Re"200
determined by di!erent methods

Investigator Method S C
D

C
L

(time-averaged) (peak-to-peak)

Braza et al. (1986) Finite volume 0)2 1)32 1)55
Henderson (1995) Spectral element * 1)341 *

Li et al. (1991) Finite element 0)18/0)187t 1)17/1)04s 1)0/1)12t

Slaouti &
Stansby (1992) Discrete vortex 0)196 * 1)25
Williamson &
Brownt (1998) Spectral element 0)197 * *

Zhang &
Zhang (1997) Finite volume 0)197 * *

Present
work Cell BEM 0)196 1)36 1)42

sDepending on out#ow boundary conditions.
tCurve "t from data provided by R.D. Henderson.
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This evidence clearly illustrates the in#uence of discretization and convergence of solu-
tion in the computation of key parameters. It was achieved by adopting an unstructured
#uid mesh and, because optimization of the procedures in the numerical scheme of the study
has not been performed, little is gained by undertaking extensive comparisons with other
numerical methods relating to computer architectures, CPU times, etc. The aim of this part
of the investigation was to demonstrate accuracy and convergence within the adopted
methodology, to develop guidelines for the discretization of the #uid domain when multi-
cylinder con"gurations are considered and to show limited comparisons with data deter-
mined by alternative numerical approaches (i.e. Table 3). For example, when examining the
#uid}structure interactions between multiple-cylinder con"gurations, the overall domain
size de"ned by front, back and side boundaries relates to the maximum domain constructed
treating each cylinder as an isolated blu! body as previously discussed.

In a limited comparison with other methods, the computational cost, in CPU time, for
the present method to solve the #ow around an isolated cylinder at Re"100 was measured.
In this trial involving a fully developed steady-state solution before shedding occurred
(Farrant et al. 1999), one shedding cycle was computed to an accuracy of 1% on the
Strouhal shedding frequency (the correct value is taken as 0)164 for this Reynolds number)
using 17 336 collocation points (two degrees of freedom per collocation point) and a time
step size of 0)1 (the second-order time-stepping scheme was used). The CPU time for one
shedding cycle was 5595 s on a Silicon Graphics Indigo 2, 195 MHz MIPS R10000
processor with 128MB RAM.

For "nite di!erence and "nite volume methods, the use of iterative procedures has been
standard for some time. For incompressible #ows, the pressure-correction-type algorithms
are often used, particularly for structured meshes where the cost of matrix solution is
usually low (Versteeg & Malalasekera 1995). For the cell BEM, the situation is more
complicated because of the use of an unstructured mesh. However, the cell BEM has
considerable similarity in its matrix structure with the "nite element method. Therefore,
some of the schemes developed for solving #uid problems with "nite element methods
provide a guide in the development of a scheme for the cell BEM. An example of the use of
such iterative procedures can be found in Tezduyar et al. (1992).
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3.2. FLOWS AROUND TWO CYLINDERS

For all arrangements of two cylinders, the separation of the cylinder surfaces is denoted by
the nondimensional quantity g* de"ned as

g*"G/D, (14)

where G is the minimum distance between the cylinder surfaces, and D is the cylinder
diameter. This notation is adopted for the #ows around arrays of cylinder con"gurations
with Reynolds number de"ned on the basis of a single-cylinder diameter.

3.2.1. Cylinders in tandem, Re"200

It is known from experiment [see, for example, Zdravkovich (1977)] that, when the cylinder
spacing is approximately g*'3.8, the upstream cylinder in the tandem arrangement sheds
in synchronization with the downstream one. To visualize the #ow pattern in this regime,
a particle simulation, for two cylinders in tandem at Re"200 and g*"4)0 is shown in
Figure 3 (Farrant et al. 1999). The particle simulation is generated from the velocity "eld of
the cell boundary element method and indicates that shedding occurs from both cylinders.
The time-averaged force coe$cients and their deviations from the mean are shown for both
cylinders in Table 4. The Strouhal frequency data con"rm that the shedding is synchro-
nized, in agreement with the experiment.

3.2.2. Cylinders side by side

The #ow interaction between two cylinders side-by-side has been studied extensively by
experimental investigations undertaken, for example, by Bearman & Wadcock (1973) and
Williamson (1985). In particular, it is known that beyond a spacing of g*"1.0, shedding
can occur in two possible synchronized modes, either in-phase or anti-phase (with respect to
the variation of the lift coe$cient). The vortex patterns associated with each of these modes
are illustrated in Figure 4. For low Reynolds number laminar #ows, Williamson (1985)
found that each mode remained stable for many cycles, although the #ow was capable of
changing modes at any time due to perturbations arising during the experiment. With the
cell BEM it was found (Farrant et al. 1999) that for spacings of approximately g*'1.5, it
was possible for either mode to be computed for large numbers of shedding cycles (greater
than 20, say). Validation was achieved for these geometries by making detailed comparisons
with the streak-line photographs taken by Williamson (1985).

4. ARRAYS OF CYLINDERS OF VARIOUS TYPES AND ARRANGEMENTS

4.1. FLOWS AROUND FOUR CYLINDERS AT EQUAL SPACING

Flows around four equispaced cylinders of equal diameter were computed for two spacings
and two #ow alignments, see Figure 5. The two spacings considered were g*"2)0 and 4)0.
For such layouts there are two extremes of #ow alignment corresponding to a rotation of
the entire arrangement by 453. For convenience, the con"guration with two cylinders
leading and two following, side-by-side, is considered to be the zero rotation case, the other,
the 453 rotation case. All computations were performed at a Reynolds number of 200, based
on one cylinder diameter.

For each of the four arrangements, the solution was computed until a periodic variation
in the forces on the bodies was achieved. For most cases, periodicity was obtained after
several thousand time steps at Dt"0)1. Evaluation of the change in shedding frequencies,



Figure 3. A particle simulation of the #ow "eld around two cylinders in tandem at Re"200 (based on one
cylinder diameter) and g*"4)0.

TABLE 4

The shedding frequency S, drag coe$cient C
D

and lift coe$cient C
L

for cylinders in
tandem at g*"4)0, Re"200

Cylinder S C
D

!ve #ve C
L

!ve #ve

Upstream 0)179 1)25 !0)05 0)07 0)00 !0)71 0)71
Downstream 0)179 0)38 !0)18 0)23 !0)00 !1)59 1)59

Figure 4. In-phase (left) and anti-phase (right) shedding modes.

Figure 5. The two alignments of #ow examined for four equispaced cylinders of equal diameter.
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from cycle to cycle, was used as a measure of periodicity. The time step size was chosen to be
Dt"0)1, as previous validation suggested this would be su$ciently small. The extent and
re"nement of the mesh was also chosen according to the levels established by Farrant et al.
(1999).
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The results of the computations are presented in the following order: (i) g*"2)0, no
rotation; (ii) g*"4)0, no rotation; (iii) g*"2)0, rotation through 453; (iv) g*"4)0, rotation
through 453.

Values are given for the time-averaged lift and drag coe$cients for each cylinder in every
case. However, unlike the simple isolated cylinder case, the time-averaged value is no longer
equivalent to the average of the peak values. This is because the vortex shed in the "rst part
of one half cycle may no longer be of the same strength as that shed in the second, due to the
presence of the other cylinders. Instead of quoting an amplitude plus or minus from the
time-average, the maximum positive and negative deviations from the time-average are
given separately. The greater the di!erence between these two maxima, the greater is
the degree of interaction from surrounding cylinders. Although, for the reasons discussed in
Section 3.1, at a time step size of Dt"0)1 a slight numerical error in the drag coe$cient
exists.

To provide insight into the behaviour of the #ow "eld, particle simulations were used.
This was done by introducing particles close to the surface of the cylinders and then
convecting each in turn using the product of the velocity at the current location of the
particle with the time-step size. Each particle was shaded according to the cylinder surface it
originated from.

4.1.1. An alignment angle of 03

When the angle of rotation is zero and the spacing is small, g*"2)0, the #ow takes
a considerable time to achieve a periodic and stable state. It was found that, the computa-
tion had to be continued to 6000 time steps or more in order to eliminate any long-lasting
transient behaviour. This, perhaps, implies that the "nal solution is not very stable. In this
respect, there were similarities with the #ow around two cylinders side-by-side, where it is
known that there is more than one shedding mode as discussed previously.

The eventual solution resulted in all cylinders shedding periodically, with identical
frequencies, that is the shedding was synchronized. The frequencies and force coe$cient
values are listed in Table 5. A plot of three cycles for the lift and drag variation is shown in
Figure 6, although the computation continued well beyond the region shown. Both the
time-averaged values and the plots of the force coe$cients reveal that there is a net
repulsion between the cylinders across the #ow. It is clear from the lift variation that the
cylinders, alongside each other, are shedding in-phase. As with the case of two cylinders
side-by-side, the vortices shed from between the cylinders are weaker and shed over
a shorter period of time, compared to those on the outside. This means that, every other
peak in the drag curve is subdued, creating a beat e!ect.

All the cylinders were a!ected by the presence of the others, and a common shedding
frequency of 0)177 was established which is well below the isolated cylinder value of 0)196.
Although the shedding frequencies were considerably changed, time-averaged drag coef-
"cients of the upstream cylinders increased only slightly, while the lift amplitudes increased
by around 25% when compared with the isolated cylinder.

The shedding from the downstream cylinders is in#uenced very strongly by the upstream
#ow. Although the time-averaged drag coe$cient was found to be low, the amplitudes of
both the lift and drag were found to be many times larger than experienced by an isolated
cylinder and those of the upstream cylinders. The e!ect of the suppressed shedding from the
inside of the cylinders is very pronounced, as illustrated by the alternate peaks of the drag
curve and the distorted shape of the lift curve in Figure 6.

The description of the forces acting on the bodies is con"rmed by an examination of the
#ow "eld using a particle simulation. Figure 7 shows a typical #ow visualization using this



TABLE 5

The shedding frequency S, time-averaged drag, C
D
, and lift coe$cient, C

L
, on

each cylinder for four equispaced cylinders at spacing g*"2)0 and Reynolds
number Re"200. The angle of alignment is zero. The #ve and !ve columns
indicate the maximum and minimum di!erences from the time-averaged force
coe$cients

Cylinder S C
D

!ve #ve C
L

!ve #ve

1 0)177 1)40 !0)09 0)12 0)07 !0)86 0)90
2 0)177 1)41 !0)10 0)11 !0)07 !0)90 0)86
3 0)177 0)92 !0)56 0)87 0)08 !1)74 1)92
4 0)177 0)92 !0)56 0)88 !0)08 !1)93 1)74

Figure 6. The coe$cients of lift (C
L
, broken lines) and drag (C

D
, solid lines) on each cylinder for four equispaced

cylinders at Re"200 (based on one cylinder diameter) and g*"2)0. The alignment to the #ow is zero. The curves
correspond to cylinders 1}4, top to bottom, respectively.
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technique. Each graduation on the superimposed scale corresponds to a length of "ve
diameters of a single cylinder. In this "gure, synchronized, in-phase vortex shedding can
be seen. Also, the synchronization of the shedding frequencies clearly arises due to the
movement of the vortices shed from the upstream cylinders; these are indicated by the
labels (a) and (b). The larger spread of the particles in vortex (a), as compared with (b),



Figure 7. A particle simulation of the #ow "eld around four equispaced cylinders at Re"200 (based on one
cylinder diameter) and g*"2)0. The alignment to the #ow is zero. The superimposed bar scale is 10 diameters
long. In-phase shedding can clearly be seen. The vortices formed in between the cylinders are weaker than those on

the outside. This is shown by the larger size vortex (a) compared with (b).
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suggests that this vortex is stronger, which agrees with the larger forces found when
shedding occurs from the outside of the cylinders.

When the spacing of the cylinders increases to g*"4)0, keeping the angle of alignment at
zero, Figure 8 shows that the interaction of the cylinders downstream remains strong
although the cylinders upstream start to behave more like the isolated cylinder case. The
calculated time averages and peak values of their force coe$cients are listed in Table 6.
Examination of these values for cylinders 1 and 2 (see Figure 5) indicates that the di!erence
between these data and those for the isolated cylinder is less than 10%. Figure 8 demon-
strates a weak interaction across the #ow, because successive peaks in the drag curve are of
a similar magnitude. This can be contrasted with the case where g*"2)0 shown in Figure 6
in which every other peak is suppressed. For g*"4)0, a weak repulsion exists between the
upstream cylinders.

In spite of the similarity between the forces a!ecting the upstream cylinders with
that of an isolated cylinder, the downstream cylinders show considerable interaction.
This is due to the wake from the upstream cylinders, because the time-averaged lift
values for the downstream cylinders are very nearly zero. The lift coe$cient peaks are also
of a similar size, indicating little interaction across the #ow. It is interesting to note,
however, that the downstream cylinders experience a very weak &attractive' time-averaged
force.

As with the previous case, the shedding from all cylinders is synchronized, but the
frequency is higher and closer to the isolated cylinder value. This is probably a result of the
upstream cylinders controlling the shedding on those further downstream. A similar
behaviour was found for the tandem arrangement in Section 3.2.1. At this spacing of



TABLE 6

The shedding frequency S, time-averaged drag, C
D
, and lift coe$cient, C

L
, on

each cylinder for four equispaced cylinders at spacing g*"4)0 and Reynolds
number Re"200. The angle of alignment is zero

Cylinder S C
D

!ve #ve C
L

!ve #ve

1 0)190 1)37 !0)06 0)09 0)05 !0)75 0)74
2 0)190 1)37 !0)06 0)09 !0)05 !0)74 0)75
3 0)190 0)67 !0)25 0)40 !0)02 !1)92 2)00
4 0)190 0)66 !0)24 0)40 0)02 !2)00 1)91

Figure 8. The coe$cients of lift (C
L
, broken lines) and drag (C

D
, solid lines) on each cylinder for four equispaced

cylinders at Re"200 (based on one cylinder diameter) and g*"4)0. The alignment to the #ow is zero. The curves
correspond to cylinders 1}4, top to bottom, respectively.
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g*"4)0, an anti-phase mode of shedding occurs and appears to be a stable solution. The
symmetry in the #ow "eld is clearly seen in the particle simulation illustrated in Figure 9.

4.1.2. An alignment angle of 453

When the arrangement of the four cylinders is rotated by 453, the resulting behaviour of the
#ow becomes less intuitive due to the increased di$culty of synchronized vortex shedding



Figure 9. A particle simulation of the #ow "eld around four equispaced cylinders at Re"200 (based on one
cylinder diameter) and g*"4)0. The alignment to the #ow is zero. The superimposed bar scale is 10 diameters

long. Anti-phase shedding can be seen.
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from all cylinders When the interaction is strongest, at g*"2)0, the #ow does not reach
a periodic state in each lift oscillation but, instead, repeats in every other. This behaviour is
most marked on the cylinder furthest downstream (i.e. cylinder 4 in Figure 5) as demon-
strated in Figure 10 by the variation of the lift coe$cient with time. The four di!erent peak
values, (1)}(4), illustrate the repeat sequence within the extended period.

For cylinder 4 the drag force oscillates at twice the rate of the lift force corresponding to
the situation for an isolated cylinder. However, the middle cylinders 2 and 3 show drag
characteristics oscillating at the same rate as the lift components. Furthermore, Figure 10
shows that the shedding from cylinders 2 and 3 is not exactly the same, as demonstrated by
the variation of the drag with time for each cylinder. This behaviour also manifests itself in
the time-averaged values and maximum positive and negative deviations of the lift and drag
coe$cients in Table 7. Similarity exists in the magnitudes for cylinders 2 and 3, but they are
not identical. On average, there is a slight repulsive force between cylinders 2 and 3.
Cylinder 4 experiences a non-zero average lift force, in spite of lying on the centre line of the
arrangement.

The leading cylinder 1 does not experience strong shedding, and the forces on the cylinder
repeat every oscillation of the lift. A comparison of the force magnitudes with those on an
isolated cylinder con"rms that the strength of the shedding is subdued and at a higher
frequency (8%). This is presumably due to the presence, in particular, of the middle
cylinders 2 and 3, which restrict the rolling up of the separated shear layers.

Particle simulation "elds were calculated for each peak in the lift through one period of
repetition, that is at the times denoted by (1)}(4) in Figure 10. The respective #ow
simulations are shown in Figures 11 and 12. It can be seen that, although the shedding from
the upstream cylinders looks very similar at times (1) and (3), and likewise (2) and (4), the
wake area is very di!erent. Clearly, the wake structure is very sensitive to the strength and
timing of the vortex shedding from each cylinder.



Figure 10. The coe$cients of lift (C
L
, broken lines) and drag (C

D
, solid lines) on each cylinder for four

equispaced cylinders at Re"200 (based on one cylinder diameter) and g*"2)0. The #ow is aligned at 453. The
curves correspond to cylinders 1}4, top to bottom, respectively. The numbers (1)}(4) indicate the sequence of peaks

in the lift through one period of repetition.

TABLE 7

The variation of the drag and lift on four equispaced cylinders at a separation of
g*"2)0, aligned at 453 to the #ow and Re"200. C

D
and C

L
are the time-

averaged drag and lift coe$cients, respectively, while ¹ is the time period for
repetition of the shedding. For cylinders 2}4 the forces repeat after two
oscillations of the lift. On the "rst cylinder, the forces repeat every oscillation of
the lift. The columns marked #ve and !ve denote the maximum and

minimum di!erences from the time averaged values

Cylinder ¹~1 C
D

!ve #ve C
L

!ve #ve

1 0)107 1)14 !0)01 0)04 0)00 !0)37 0)37
2 0)107 1)53 !0)20 0)19 !0)07 !1)21 1)12
3 0)107 1)55 !0)21 0)14 0)08 !1)11 1)17
4 0)107 0)58 !0)20 0)28 0)07 !1)58 1)53
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Moving the cylinders further apart, to a spacing of g*"4)0, but keeping the alignment of
the #ow at 453, dramatically reduces the interaction between all the cylinders, except
cylinder 4, which is directly in the wake of cylinder 1. As a result of the weak interaction, the
force coe$cients for cylinders 1}3 are all very close to those found for an isolated cylinder,



Figure 11. A particle simulation of the #ow around four equispaced cylinders at spacing g*"2)0 and Re"200.
The alignment angle to the #ow is 453. The top picture is at time (1), when the lift on the last cylinder is at a negative
peak. The bottom picture is at time (2), when the lift on the last cylinder is at a positive peak, see Figure 10. The

superimposed bar scale is 10 diameters long.
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Figure 12. A particle simulation of the #ow around four equispaced cylinders at spacing g*"2)0 and Re"200.
The alignment angle to the #ow is 453. The top picture is at time (3), when the lift on the last cylinder is at a negative
peak. The bottom picture is at time (4), when the lift on the last cylinder is at a positive peak, see Figure 10. The

superimposed bar scale is 10 diameters long.
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TABLE 8

The shedding frequency S, time-averaged drag, C
D
, and lift coe$cient, C

L
, on

each cylinder for four equispaced cylinders at spacing g*"4)0 and Reynolds
number Re"200. The angle of alignment is 453

Cylinder S C
D

!ve #ve C
L

!ve #ve

1 0)189 1)33 !0)04 0)06 0)00 !0)68 0)68
2 0)189 1)36 !0)07 0)10 !0)04 !0)60 0)60
3 0)189 1)36 !0)07 0)10 !0)04 !0)60 0)60
4 0)189 0)59 !0)24 0)28 0)0 !1)76 1)76

Figure 13. The coe$cients of lift (C
L
, broken lines) and drag (C

L
, solid lines) on each cylinder for four

equispaced cylinders at Re"200 (based on one cylinder diameter) and g*"4)0. The arrangement is aligned at 453
to the #ow. The curves correspond to cylinders 1}4, top to bottom, respectively.
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see Table 8, although there is a weak repulsion between cylinders 2 and 3. The interac-
tion between cylinders 2 and 3 results in a slight suppression of alternate peaks in
the variation of the drag curves for these cylinders, as shown in the plots in Figure 13.
Cylinder 4 experiences a much greater lift force than all the other cylinders. This is of zero
mean value which is to be expected given the very weak interaction of cylinders 2 and 3.
A comparison of particle simulation for the arrangement of four cylinders in the wake
area of cylinder 4 (Figure 14) shows considerable similarity with the wake area behind



Figure 14. A particle simulation of the #ow "eld around four equispaced cylinders at Re"200 (based on one
cylinder diameter) and g*"4)0. The arrangement is aligned at 453 to the #ow. The superimposed bar scale is 10

diameters long. In-phase shedding can be seen at the middle cylinders.
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the tandem arrangement illustrated in Figure 3. The only visible di!erences arise from
the outermost streaks which are swept up and incorporated into the vortex streets of
cylinders 2 and 3.

4.2. FLOWS AROUND AN ELLIPTICAL AND A CIRCULAR CYLINDER

Results are presented for the two-dimensional #ow around an elliptical cylinder in close
proximity to a circular cylinder. Figure 15 illustrates the blu!-body con"gurations exam-
ined. As can be seen, the across-#ow orientation can be transformed into the in-line case by
a simple rotation of 903. The ratio of the minor axis dimension of the elliptical cylinder or

the diameter of the circular cylinder to the elliptical cylinder major axis is 1/J2.
According to Massey (1989), the characteristic length for the de"nition of Reynolds

number relates to the largest blu! body dimension across the #ow. Thus, if the geometry
transformation between the two cases under consideration is just a rotation through 903,
then the Reynolds numbers in the two cases will be di!erent. That is, the Reynolds number
of the in-line con"guration, Re

i
, is related to that of the across-#ow con"guration, Re

a
, by

Re
a
"J2Re

i
. Using this de"nition of Reynolds number, a computation was carried out

with the geometry in the across-#ow orientation at Reynolds number Re
a
"200. Therefore,



Figure 15. The two alignments of the elliptical and circular cylinder to the #ow. One arrangement is trans-
formed to the other by a clockwise rotation through 903.
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the Reynolds number for the computation with the geometry in-line with the #ow was
approximately Re

i
"141. This is simply con"rmation of the e!ect of rotating the geometry

which leads to a smaller body section across the #ow for the in-line case.
The force coe$cients, C

D
and C

L
, were calculated using the dimension, across the #ow,

of the corresponding body. This is also true for the Strouhal frequency which can be
rede"ned as

S"
f¸

;
,

where f is the shedding frequency,; the free-stream velocity, and ¸ the characteristic length
of the body (i.e. the length of the ellipse in the across-#ow con"guration and the cylinder
diameter in the in-line arrangement).

These de"nitions of characteristic length allow a measure of comparison of the re-
sults with those of similarly shaped isolated bodies. Comparison of the nondimensional
parameters between the two orientations of geometry is not directly possible.

The nondimensional gap parameter was set in both orientations to be g*"3)0, non-
dimensionalized against the major axis dimension of the elliptical cylinder. That is,

g*"
G

¸
e

.

Here G is the minimum gap between the surfaces of the bodies, and ¸
e
is the length of the

ellipse. For convenience, the de"nition of g* remains unchanged with the orientation of the
blu! bodies to the #ow.

4.2.1. In-line with the yow

When the elliptical cylinder is directly in the wake of the upstream cylinder at a separation
of g*"3)0 and Re"141, vortex shedding into the wake is synchronized. The #ow around
the cylinders is very similar to that found when the two bodies are circular cylinders. This is
evident from a comparison of the particle simulations shown in Figures 16 and 3. When the
average and peak values of the lift coe$cient C

L
and drag coe$cient C

D
(see Table 9) are

compared with those calculated for two circular cylinders in Section 3.2.1 (at a di!erent
Reynolds number and spacing) it is again found that there exists much similarity. The
upstream circular cylinder sheds a vortex #ow onto the elliptical cylinder, thus increasing
the strength of the vortex shedding on this cylinder considerably. The time-averaged lift
values are zero in all cases, and the drag on the downstream elliptical cylinder is greatly
reduced.



Figure 16. A particle simulation of the #ow "eld around an elliptical cylinder downstream of a circular cylinder
at Re"141 (based on the circular cylinder diameter) and g*"3)0 (based on the largest dimension of the elliptical
cylinder). The superimposed bar scale is 15 times the length of the largest dimension of the elliptical cylinder.

TABLE 9

The shedding frequency f, Strouhal shedding frequency S, drag coe$cient C
D

and lift coe$cient C
L
for

a circular cylinder in line and in front of elliptical cylinder. The Reynolds number, Re"141, is based
on the largest body dimension across the #ow. The spacing g*"3)0, based on the largest dimension of
the elliptical cylinder. The Strouhal shedding frequency was calculated for an isolated circular cylinder

at Re"141 from the empirical formula provided by Williamson (1991)

Cylinder f S C
D

!ve #ve C
L

!ve #ve

Circular 0)234 0)166 1)22 !0)02 0)04 0)00 !0)50 0)50
Elliptical 0)234 0)166 0)42 !0)18 0)21 0)00 !1)77 1)77

Williamson (1991) * 0)181 * * * * * *
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Alongside the force data for the in-line circular and elliptical cylinder case presented in
Table 9 is the shedding frequency for an isolated cylinder at Re"141. This shedding
frequency was calculated from the empirical formula provided by Williamson (1991). From
these data it is seen that the close proximity of the two cylinders acts to reduce the shedding
frequency. A similar result was also computed for the case of the two circular cylinders in
tandem (see Section 3.2.1).

4.2.2. Across the yow

When the arrangement of the elliptical and circular cylinder is rotated through 903, so that
it is across the #ow, the Reynolds number is raised due to the increased cross-section of the
elliptical cylinder which is presented to the #ow. In this case, the computation was carried
out at a Reynolds number of Re"200. The separation remained unchanged at g*"3)0,
based on the major axis dimension of the elliptical cylinder.

The computed solution revealed that the circular cylinder shed vortices at a di!erent
frequency to the elliptical cylinder. This was expected, because of the di!erent cross-
sectional dimensions presented to the oncoming #ow. The interaction of the two cylinders
generates an amplitude modulation or beat-type phenomenon as displayed in Figure 17 in
the variation of the lift and drag coe$cients of both cylinders. Although the modulation
e!ect is present in the force variation for both cylinders, it is most noticeable for the circular
cylinder because of weaker shedding. As computational time proceeded, the shedding from
the two blu! bodies constantly shifted from in- to anti-phase (see Figure 18). When the
shedding is in-phase the amplitudes of the lift and drag forces on both bodies are at their
maxima. Conversely, when the shedding is in anti-phase the amplitudes of the lift and drag
forces are at their minima.



Figure 17. The variation of the lift coe$cient C
L

(broken line) and the drag coe$cient C
D

(solid line) for
a circular cylinder (top curves) and an elliptical cylinder (bottom curves) arranged across the #ow. The amplitude
modulation e!ect is seen and is due to the di!erent shedding frequencies of each body. The Reynolds number for the
computation is Re"200 and spacing is g*"3)0, both based on the largest dimension of the elliptical cylinder.

Figure 18. In-phase (left) and anti-phase (right) vortex-shedding modes from a circular and elliptical cylinder
(shaded areas) arranged across the #ow.
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Although the shedding phases change, their frequencies remain constant. For the ellipti-
cal cylinder a Strouhal shedding frequency of 0)229 was determined, exceeding the value of
0)196 computed in Section 3.1 for an isolated circular cylinder at the same Reynolds
number. The circular cylinder sheds at a Strouhal frequency of 0)192, which is higher than
the Strouhal frequency of 0)181 calculated from the empirical formula provided by
Williamson (1991). For the calculation using the empirical formula, an e!ective Reynolds
number of Re"141 was taken rather than the Reynolds number for the whole computa-
tion which was at Re"200.



Figure 19. A particle simulation of the #ow "eld around a circular and elliptical cylinder at Re"200 and
g*"3)0 both based on the largest dimension of the elliptical cylinder. Each graduation on the superimposed bar

scale is "ve times the largest dimension of the elliptical cylinder.
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Figure 19 illustrates a typical in-phase particle simulation of the #ow into the wake. The
di!erent wake patterns are clearly visible (i.e., 8 and 7 vortices behind the cylinder and
ellipse, respectively), a degree of repetition and all the ingredients generating a beat-type
phenomenon.

5. CONCLUSIONS

A cell boundary element method was used to investigate unsteady #ow solutions to more
complicated geometries than the standard cases of two circular cylinders in tandem or
side-by-side as previously described by Farrant et al. (1999).

Flows around four equispaced circular cylinders of equal diameter were solved for two
orientations and spacings, making four combinations in total. In the case when the
cylinders were in two pairs across the stream, similar features were observed in the #ow
when compared with the tandem and side-by-side arrangements. That is, when the spacing
was small (g*"2)0), an in-phase vortex-shedding mode occurred. However, for increased
cylinder spacing an anti-phase vortex-shedding mode dominated, with the wake pattern
resembling the #ow of two tandem pairs placed alongside each other. Given that both the
in-phase and anti-phase modes were only achieved after a considerable computational time
(suggesting that they are not very stable) the ability to cause switching from one mode to the
other by applying a suitable perturbation was di$cult to con"rm. Such switching behaviour
for the side-by-side arrangement was con"rmed and observed in the previous study of
Farrant et al. (1999).

When the arrangement is rotated through 453, so that there is only one pair across the
#ow and one cylinder upstream and downstream, and the spacing is kept small (g*"2.0),
the #ow behaviour becomes more disordered. In fact, the shedding process was found to
repeat in every other oscillation of the lift, and more disordered #ow patterns were seen in
the wake. At larger spacings (g*"4)0), the outer cylinders shed synchronously and the
shedding repeated in every lift cycle. This would suggest that, as with the side-by-side
arrangement, the closer spacings result in disordered and aperiodic #ow.
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The #ow around a circular cylinder and an elliptical cylinder in-line and across the #ow
revealed the e!ect of di!erent characteristic body dimensions on the vortex shedding. When
the circular cylinder was in-line and upstream of the elliptical cylinder it was found that
shedding was synchronized, with a very strong interaction between the two bodies. When
the two blu! bodies, with their di!erent characteristic lengths, were placed across the #ow,
the interaction was weaker and the cylinders shed vortices at di!erent frequencies. Conse-
quently, the shedding from each cylinder constantly moved in- and out-of-phase, reinforc-
ing and reducing the shedding strength in the process. This e!ect has similarity with
amplitude modulation or beat phenomena.

In all these investigations the use of the cell boundary element method using an
unstructured #uid domain mesh idealization proved straightforward and required no
modi"cation for variation of the number of bodies or their shape.
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